Comments to source code

This commit is contained in:
Andreas Mieke 2018-04-03 17:18:28 +02:00
parent d109bae8d7
commit 9a18bd88f0
22 changed files with 286 additions and 122 deletions

View file

@ -2,6 +2,7 @@
void bluetooth_init(void)
{
// Init USART1
usart1_init();
}
@ -9,6 +10,8 @@ void bluetooth_send_gyro_data(uint8_t X, uint8_t Y, uint8_t Z)
{
char __str[128] = {0};
char *str = __str;
// Print data comma-sperated to String
sprintf(str, "%d,%d,%d\r\n", X, Y, Z);
// Send string over USARt to the bluetooth module
USART_SendString(USART1, str);
}

View file

@ -1,9 +1,9 @@
#include "bma.h"
#define BMA_ADDR (uint8_t)0x70 // 0b01110000
// ---- Vendor address part
// --- User address part
// - Keep free for R/W bit (set by I2C_Send7bitAddress())
// ---- Vendor address part
// --- User address part
// - Keep free for R/W bit (set by I2C_Send7bitAddress())
void bma_init(void)
{
@ -13,7 +13,7 @@ void bma_init(void)
void bma_get_acc(uint8_t *X, uint8_t *Y, uint8_t *Z)
{
int16_t acc[3];
// Select first register address to read
// Send first register address to read
I2C_GenerateSTART(I2C1, ENABLE);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
I2C_Send7bitAddress(I2C1, BMA_ADDR, I2C_Direction_Transmitter);
@ -22,39 +22,42 @@ void bma_get_acc(uint8_t *X, uint8_t *Y, uint8_t *Z)
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
I2C_GenerateSTOP(I2C1, ENABLE);
// Start Rx transmission
I2C_GenerateSTART(I2C1, ENABLE);
I2C_AcknowledgeConfig(I2C1, ENABLE);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
I2C_Send7bitAddress(I2C1, BMA_ADDR, I2C_Direction_Receiver);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));
// X LSB
// Read X LSB
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED));
acc[0] = (I2C_ReceiveData(I2C1) & 0xC0) >> 6;
// X MSB
// Read X MSB
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED));
acc[0] = (I2C_ReceiveData(I2C1) & 0xFF) << 2 | (acc[0] & 0x0003);
if(acc[0] & 0x0200) acc[0] |= 0xFC00;
// Y LSB
// Read Y LSB
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED));
acc[1] = (I2C_ReceiveData(I2C1) & 0xC0) >> 6;
// Y MSB
// Read Y MSB
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED));
acc[1] = (I2C_ReceiveData(I2C1) & 0xFF) << 2 | (acc[1] & 0x0003);
if(acc[1] & 0x0200) acc[1] |= 0xFC00;
// Z LSB
// Read Z LSB
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED));
acc[2] = (I2C_ReceiveData(I2C1) & 0xC0) >> 6;
// Z MSB
// Read Z MSB
I2C_AcknowledgeConfig(I2C1, DISABLE);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED));
acc[2] = (I2C_ReceiveData(I2C1) & 0xFF) << 2 | (acc[2] & 0x0003);
if(acc[2] & 0x0200) acc[2] |= 0xFC00;
// Stop condition
I2C_GenerateSTOP(I2C1, ENABLE);
// Calculate display values, with a maximum amplitude of 2.0g, as described in the datasheet
*X = (acc[0]/4) + 128;
*Y = (acc[1]/4) + 128;
*Z = (acc[2]/4) + 128;

View file

@ -5,12 +5,15 @@ uint8_t running = 0;
void USART3_IRQHandler(void)
{
// HAndle only USART3 RXNE interrupt
if (USART_GetITStatus(USART3, USART_IT_RXNE) == SET) {
// Get display state
state = (disp_state_t)((USART_ReceiveData(USART3) & 0x00FF) - '0');
if (state > 4) {
state = DISP_STATE_NONE;
}
}
// Set running according to pressed button
if (state == DISP_STATE_START) {
running = 1;
} else if (state == DISP_STATE_PAUSE) {
@ -20,8 +23,10 @@ void USART3_IRQHandler(void)
void disp_init(void)
{
// Init USART3
usart3_init();
// Init USART3 interrupt
NVIC_InitTypeDef nvic;
nvic.NVIC_IRQChannel = USART3_IRQn;
nvic.NVIC_IRQChannelCmd = ENABLE;
@ -30,11 +35,13 @@ void disp_init(void)
NVIC_Init(&nvic);
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
// Disable display till startup is complete
disp_disable();
}
disp_state_t disp_get_last_state(void)
{
// Returns the last state (which we got form the interrupt)
disp_state_t tmp = state;
state = DISP_STATE_NONE;
return tmp;
@ -44,16 +51,19 @@ void disp_send_gyro_data(uint8_t X, uint8_t Y, uint8_t Z)
{
char __str[128] = {0};
char *str = __str;
// Print gyro data to the display
sprintf(str, "add 1,0,%d\xFF\xFF\xFF" "add 1,1,%d\xFF\xFF\xFF" "add 1,2,%d\xFF\xFF\xFF", X, Y, Z);
USART_SendString(USART3, str);
}
void disp_disable(void)
{
// Disable (dim to 0%) display
USART_SendString(USART3, "dim=0\xFF\xFF\xFF");
}
void disp_enable(void)
{
// Enable display again (dim to 100%)
USART_SendString(USART3, "dim=100\xFF\xFF\xFF");
}

View file

@ -6,6 +6,7 @@
#include "io.h"
#include "stdio.h"
// Display states/buttons
typedef enum uint8_t {
DISP_STATE_NONE = 0x00,
DISP_STATE_PAUSE,

View file

@ -2,21 +2,24 @@
extern volatile uint32_t SysTickCnt;
// EEPROM addresse
#define EEPROM_ADDR (uint8_t)0xA0 // 0b10100000
// ---- Vendor address part
// --- User address part
// - Keep free for R/W bit (set by I2C_Send7bitAddress())
// ---- Vendor address part
// --- User address part
// - Keep free for R/W bit (set by I2C_Send7bitAddress())
uint32_t last_write_tick = 0;
void eeprom_init(void)
{
// Init I2C1
i2c1_init();
}
void eeprom_read(uint16_t address, uint8_t *data, uint16_t length)
{
uint16_t cur_pos;
// Send address of EEPROM and start address on EEPROM
I2C_GenerateSTART(I2C1, ENABLE);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
I2C_Send7bitAddress(I2C1, EEPROM_ADDR, I2C_Direction_Transmitter);
@ -26,12 +29,14 @@ void eeprom_read(uint16_t address, uint8_t *data, uint16_t length)
I2C_SendData(I2C1, (address & 0x00FF));
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
// Switch to receive mode
I2C_GenerateSTART(I2C1, ENABLE);
I2C_AcknowledgeConfig(I2C1, ENABLE);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
I2C_Send7bitAddress(I2C1, EEPROM_ADDR, I2C_Direction_Receiver);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));
// Read all bytes and disable ACK on last byte
for(cur_pos = 0; cur_pos < length; cur_pos++) {
if(cur_pos == length - 1) {
I2C_AcknowledgeConfig(I2C1, DISABLE);
@ -40,6 +45,7 @@ void eeprom_read(uint16_t address, uint8_t *data, uint16_t length)
data[cur_pos] = I2C_ReceiveData(I2C1);
}
// Send stop condition
I2C_GenerateSTOP(I2C1, ENABLE);
}
@ -49,9 +55,13 @@ void eeprom_write(uint16_t address, uint8_t *data, uint16_t length)
uint16_t cur_pos = 0;
address = address & 0xFFA0;
// If more than one page is needed, cycle over the pages
for(cur_page = 0; cur_page <= ((length-1)/64); cur_page++) {
// Wait 5 ms for the write cycle (see datasheet)
while((SysTickCnt - last_write_tick) <= 5);
// Send start condition
I2C_GenerateSTART(I2C1, ENABLE);
// Send EEPROM address and start address of data to send
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
I2C_Send7bitAddress(I2C1, EEPROM_ADDR, I2C_Direction_Transmitter);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));
@ -60,11 +70,13 @@ void eeprom_write(uint16_t address, uint8_t *data, uint16_t length)
I2C_SendData(I2C1, (address & 0x00FF));
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
// Send max 64 bytes (1 page) of data
for(; (cur_pos < length) && (cur_pos%64 <= 63); cur_pos++) {
I2C_SendData(I2C1, data[cur_pos]);
while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
}
// Generate stop condition and calculate address of next page (if needed)
I2C_GenerateSTOP(I2C1, ENABLE);
address += 0x0040;
last_write_tick = SysTickCnt;

View file

@ -6,104 +6,125 @@ uint8_t usart3_inited = 0;
void i2c1_init(void)
{
// If I2C1 is already inited, do nothing
if (i2c1_inited == 1) {
return;
}
// Enable GPIOB and I2C1 clocks
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
// Create gpio struct and fill default values
GPIO_InitTypeDef gpio;
GPIO_StructInit(&gpio);
// SCL
// Set PB6 to alternate function push pull (SCL)
gpio.GPIO_Mode = GPIO_Mode_AF_PP;
gpio.GPIO_Pin = GPIO_Pin_6;
GPIO_Init(GPIOB, &gpio);
// SDA
// Set PB7 to alternate function open drain (SDA)
gpio.GPIO_Mode = GPIO_Mode_AF_OD;
gpio.GPIO_Pin = GPIO_Pin_7;
GPIO_Init(GPIOB, &gpio);
// Set I2C1 clock to 400 kHz
I2C_InitTypeDef i2c;
I2C_StructInit(&i2c);
i2c.I2C_ClockSpeed = 400000;
I2C_Init(I2C1, &i2c);
// Enable I2C1
I2C_Cmd(I2C1, ENABLE);
i2c1_inited = 1;
}
void usart1_init(void)
{
// If USART1 is inited, do nothing
if (usart1_inited == 1) {
return;
}
// Enable GPIOA and USART1 clocks
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
// Create gpio struct and fill default values
GPIO_InitTypeDef gpio;
GPIO_StructInit(&gpio);
// TxD
// Set PA9 to alternate function push pull (TxD)
gpio.GPIO_Mode = GPIO_Mode_AF_PP;
gpio.GPIO_Pin = GPIO_Pin_9;
GPIO_Init(GPIOA, &gpio);
// RxD
// Set PA10 to input floating (RxD)
gpio.GPIO_Mode = GPIO_Mode_IN_FLOATING;
gpio.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOA, &gpio);
// Set USART1 clock to 115 200 baud
USART_InitTypeDef usart;
USART_StructInit(&usart);
usart.USART_BaudRate = 115200;
USART_Init(USART1, &usart);
// Init USART1 clocks
USART_ClockInitTypeDef usartclock;
USART_ClockStructInit(&usartclock);
USART_ClockInit(USART1, &usartclock);
// Enable USART1
USART_Cmd(USART1, ENABLE);
usart1_inited = 1;
}
void usart3_init(void)
{
// If USART3 is inited, do nothing
if (usart3_inited == 1) {
return;
}
// Enable GPIOB and USART3 clocks
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
// Create gpio struct and fill default values
GPIO_InitTypeDef gpio;
GPIO_StructInit(&gpio);
// TxD
// Set PB10 to alternate function push pull (TxD)
gpio.GPIO_Mode = GPIO_Mode_AF_PP;
gpio.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOB, &gpio);
// RxD
// Set PB11 to input floating (RxD)
gpio.GPIO_Mode = GPIO_Mode_IN_FLOATING;
gpio.GPIO_Pin = GPIO_Pin_11;
GPIO_Init(GPIOB, &gpio);
// Set USART3 clock to 115 200 baud
USART_InitTypeDef usart;
USART_StructInit(&usart);
usart.USART_BaudRate = 115200;
USART_Init(USART3, &usart);
// Init USART3 clocks
USART_ClockInitTypeDef usartclock;
USART_ClockStructInit(&usartclock);
USART_ClockInit(USART3, &usartclock);
// Enable USART3
USART_Cmd(USART3, ENABLE);
usart3_inited = 1;
}
void USART_SendString(USART_TypeDef *USARTx, char *str)
{
// Send a string, byte by byte over the specified USART
while (*str) {
while (USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET);
USART_SendData(USARTx, *str++);

View file

@ -7,46 +7,63 @@
int main()
{
// Variables needed
disp_state_t current_state = DISP_STATE_NONE;
uint8_t X, Y, Z, running = 0;
uint8_t bX[BUFFER_SIZE] = {128}, bY[BUFFER_SIZE] = {128}, bZ[BUFFER_SIZE] = {128};
uint8_t bX[BUFFER_SIZE] = {128}, bY[BUFFER_SIZE] = {128}, bZ[BUFFER_SIZE] = {128}; // 128 is the 'zero' line in the display, so the array is initzialized to 128
uint16_t buffer_pos = 0;
// Init everything we need
disp_init();
systick_init();
bma_init();
eeprom_init();
bluetooth_init();
// Enable display
disp_enable();
// Main loop
for (;;) {
// Check if button is pressed
current_state = disp_get_last_state();
if(current_state == DISP_STATE_START) {
// If start button set running to true
running = 1;
} else if(current_state == DISP_STATE_PAUSE) {
// On pause set running to false
running = 0;
}
// Only read and send data if display is actually running
if(running == 1) {
// Get accelerations
bma_get_acc(&X, &Y, &Z);
// Put them into the buffer (for save/recall)
bX[buffer_pos] = X;
bY[buffer_pos] = Y;
bZ[buffer_pos] = Z;
// Send data to display and bluetooth
disp_send_gyro_data(X, Y, Z);
bluetooth_send_gyro_data(X, Y, Z);
// Increment buffer position
buffer_pos++;
if(buffer_pos == BUFFER_SIZE) {
// If buffer size is reached, return to 0 (ringbuffer)
buffer_pos = 0;
}
}
if(current_state == DISP_STATE_SAVE) {
// On save, send the three arrays to the EEPROM
eeprom_write(0x0000, bX, BUFFER_SIZE);
eeprom_write(0x0400, bY, BUFFER_SIZE);
eeprom_write(0x0800, bZ, BUFFER_SIZE);
}
if(current_state == DISP_STATE_RECALL) {
// On recall read the three arrays from EEPROM
eeprom_read(0x0000, bX, BUFFER_SIZE);
eeprom_read(0x0400, bY, BUFFER_SIZE);
eeprom_read(0x0800, bZ, BUFFER_SIZE);
// Also update display and bluetooth completely with the new data in the buffer
for(uint16_t i = 0; i < BUFFER_SIZE; i++) {
disp_send_gyro_data(bX[i], bY[i], bZ[i]);
bluetooth_send_gyro_data(bX[i], bY[i], bZ[i]);

View file

@ -4,20 +4,24 @@ volatile uint32_t SysTickCnt;
void SysTick_Handler()
{
// SysTick_Handler increments SysTickCnt
SysTickCnt++;
}
void systick_init(void)
{
// Init the systick clocks to a T = 1 ms
RCC_ClocksTypeDef clocks;
RCC_GetClocksFreq(&clocks);
SysTick_Config(clocks.HCLK_Frequency/1000 - 1);
// Set count to 0
SysTickCnt = 0;
}
void Wait(uint32_t ms)
{
// Wait specified time in milliseconds
uint32_t SysTickCntHold = SysTickCnt;
while((SysTickCnt - SysTickCntHold) <= ms);
while((SysTickCnt - SysTickCntHold) <= ms);
}